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Age-Dependent Transformation of Skin
Biomechanical Properties and Micromorphology

during Infancy and Childhood
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TO THE EDITOR

It is well known that skin continues to
undergo structural and functional
changes after birth. These include skin
surface acidification (Fluhretal., 2012);
increased hydration over the first few
weeks of life, followed by decreased
hydration (Nikolovski et al., 2008); and
changes in cell organization and struc-
ture (Bensaci et al., 2015; Fluhr et al.,
2014). In terms of biomechanical prop-
erties, skin elasticity decreases over the
first decade of life (Sugihara etal., 1991)
and collagen and elastin fiber density
increases for several decades (Vitellaro-
Zuccarello et al., 1994).

Studies of the biomechanical matura-
tion of the skin have focused primarily on
changes thatoccur in adults during aging,
and most studies of skin maturation in
children have focused on the maturation
of the epidermis, which increases in
thickness with age and has high cell
turnover in the first months of life
(Stamatas et al., 2010). One recent study
showed that skin biomechanical proper-
ties evolve throughout infancy (Visscher
etal.,2017), but such studies remain rare.

Here, we investigated the correlation
between the maturation of biomechanical
properties of the skin and the evolution of
skin topography and micromorphology
from infancy to early adulthood (study
approved by Provincial Ethical Commit-
tee of Modena, University Hospital of
Modena). We recruited a cohort of 70
subjects in seven age groups: 1—15 days,
5 weeks, 5—7 months, 2 years, 4—5 years,
7—8 years, and 20—35 years
(Supplementary Table S1 online); all pa-
tients or their parent or guardian gave their
informed written consent. Skin properties

were examined by cutometry and reflec-
tance confocal microscopy in vivo, and by
immunohistochemistry in a limited num-
ber of foreskin biopsy samples (see
Supplementary  Material  online  for
detailed methods).

Cutometry showed that skin elasticity,
as measured by the ratio of immediate
retraction to maximum distention (Ur/
Uf), increased from infancy to 2 years of
age and then plateaued (Figure Ta). The
viscoelastic component, calculated as
the ratio of immediate to delayed disten-
sion (Uv/Ue), decreased from infancy to
adulthood (Figure 1b). Total recovery
(Ua) was slightly higher at older ages
(Figure Tc) and total deformation (Uf) did
not vary between age groups (Figure 1d).
The parameters related to skin elasticity
and recovery (Ur/Uf, Ua/Uf, Ur/Ue, and
Ua) were positively correlated with age
and body surface area, whereas Uv/Ue
was negatively correlated with both of
these and Uf did not have any significant
correlations (Figure Te). None of the pa-
rameters were correlated with stratum
corneum hydration.

The viscoelastic properties of the skin
are related to the presence of interstitial
fluid in the dermal extracellular matrix,
and thus changes in Uv/Ue may reflect the
water content of the epidermis and the
dermis (Dobrev, 2002). Although we
cannot completely rule out this possibility,
none of the parameters examined were
significantly (ie, P < 0.01) correlated with
stratum corneum hydration as measured
by cutometer (Figure Te), suggesting that
the changes in these skin biomechanical
properties are related to structural matu-
ration rather than hydration. This is
consistent with reports that skin
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biomechanical properties are related to
the structure of the extracellular matrix in
adults, specifically elastin fibers, fibrillin
microfibrils, rete ridges, and, to a lesser
extent, collagen fibrils (Langton et al.,
2017).

Skin microstructure was examined by
reflectance confocal microscopy, which
allows fast, in vivo imaging of the cyto-
architectural aspects of the skin. The
thickness of the stratum corneum and the
supra papillary epidermis increased with
age (Figure 2a), consistent with previous
findings (Stamatas et al., 2010). The ho-
mogeneity and furrow architecture of the
stratum corneum changed dramatically

between infants and older children
(Supplementary ~ Figure ~ S1a—STd).
Reflecting  spheroids were observed

throughout childhood and were most
prevalent during infancy (Supplementary
Figure S1e—S1f), and the nature of these
structures warrants further investigation.
The observed evolution from poorly
defined to well-defined keratinocyte
outline (Supplementary Table S2 online)
might reflect the fact that keratinocyte
proliferation is high during the first months
of life (Stamatas et al., 2010). Dermal
papillae increased in number with age,
consistent with a previous study by
Miyauchi etal. (2016), but contrary to this
previous study, rete ridge thickness was
stable across age groups (Figure 2a). This
contradiction could be explained by a
difference in age group stratification in the
studies.

Interestingly, collagen fibers were
fibrillarand showed a parallel orientation
in newborns, whereas they were thicker,
coarse, and multidirectional in older
infants through adults (Figure 2a—2c).
Mechanical forces are known to increase
the diameter of collagen fibrils (Sanders
and Goldstein, 2001). Our data support
a contribution of mechanical forces to
dermal maturation postnatally, including
the reorganization of the collagen matrix
and increased collagen fiber thickness
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Age Calculated BSA Stratum corneum hydration
Parameter r P-value r P-value r P-value N
Biological elasticity (Ur/Uf) 0.585 < 0.001 0.621 < 0.001 0.244 0.042 70
Gross elasticity (Ua/Uf) 0.439 < 0.001 0.462 <0.001 0.282 0.018 70
Net elasticity (Ur/Ue) 0.437 <0.001 0.487 <0.001 0.297 0.013 70
Ratio viscoelastic to elastic distension (Uv/Ue) -0.555 <0.001 -0.541 <0.001 -0.121 0.318 70
Total recovery (Ua) 0.321 <0.001 0.314 <0.001 0.131 0.28 70
Total deformation (Uf) 0.098 0.419 0.091 0.455 -0.028 0.819 70

Figure 1. Evolution of skin properties and correlations with age, BSA, and hydration. Skin biomechanical properties were assessed by cutometer in the seven
indicated age groups (n = 9 to 11 per group). (@) Ur/Uf: tonicity parameter representing biological elasticity. (b) Uv/Ue: ratio of viscoelasticity to elastic
distension. (c) Ua: viscoelasticity parameter representing the complete relaxation amplitude after pressure is released. (d) Uf: total deformation parameter
representing the maximum amplitude and passive behavior of the skin to force. (e) Correlations between skin biomechanical parameters and age, calculated
BSA, and stratum corneum hydration were calculated using Spearman’s test. BSA, body surface area; r, Spearman’s correlation constant. Significant correlations

(P < 0.01) are indicated in bold.

(Sanders and Goldstein, 2001). We also
noticed a structural pattern that has not
been reported previously. Circular “cuff-
ing” of the follicle by collagen fibers was
observed in newborns only, and was very
rare or completely absent in all other age
groups (Figure 2a, 2d, 2e). This interesting
feature may reflect the unique properties
of postnatal hair follicle growth (Zhou
etal., 2016).

The elastin component of the skin
cannot be observed by reflectance
confocal microscopy. Therefore, we
analyzed its structural maturation by
immunohistochemistry on foreskin sam-
ples from patients of various ages. Both
fibrillin and elastin fibers increased in
length and intensity with age, especially

at the dermal—epidermal junction
(Supplementary Figure S2 online).

The strength of the present study is the
analysis of both structural and biome-
chanical properties of the skin in the same
subjects over a wide range of age groups.
In addition to evidence supporting the
relationship between structural and
biomechanical properties during skin
maturation, we introduce the observation
of collagen fiber cuffing around hair fol-
licles in newborns. Collectively, these
data demonstrate the biochemical and
structural evolution of the dermis during
postnatal development, as well as the
translation of these changes into matura-
tion of the biomechanical properties of
the skin.
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scale 3204103 2904159 2704176 170+ 149 3404135 3304133 130116
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(per image)
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{relativeabundance) Absent 40% 100% 20% 100% 100% 20% 100%

Cc

Figure 2. Evolution of skin microstructure with age observed by in vivo reflectance confocal
microscopy. (a) Stratum corneum thickness, epidermal thickness, number of follicular structures, and
number of dermal papilla were obtained directly from image analysis. The abundance of fibrillar or
coarse collagen fibers was scored in each subject using a 0—4 scale by the investigator. The relative
abundance of collagen fibers and presence of collagen cuffing was semi-quantitatively assessed by the
investigator (gross value given per age group). (b) Parallel collagen fibers as observed in newborns.

(c) Multidirectional collagen fibers as observed in adults. (d) Circular collagen follicle cuffing as observed
in newborns (red arrows) (e). The absence of circular collagen follicle cuffing in adults. Sight

area = 830 x 830 um. Scale bar = 200 pm.
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